Search results

Search for "Internet of Things (IoT)" in Full Text gives 6 result(s) in Beilstein Journal of Nanotechnology.

Carbon nanotube-cellulose ink for rapid solvent identification

  • Tiago Amarante,
  • Thiago H. R. Cunha,
  • Claudio Laudares,
  • Ana P. M. Barboza,
  • Ana Carolina dos Santos,
  • Cíntia L. Pereira,
  • Vinicius Ornelas,
  • Bernardo R. A. Neves,
  • André S. Ferlauto and
  • Rodrigo G. Lacerda

Beilstein J. Nanotechnol. 2023, 14, 535–543, doi:10.3762/bjnano.14.44

Graphical Abstract
  • ][18]. Additionally, the Internet of Things (IoT) also requires devices to be integrated into a variety of systems and different surfaces of our daily life, which demands the low-cost, reliable, and large-scale production of sensors [12][13][19]. Yet, the lack of such reproducible large-scale
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

Nanogenerator-based self-powered sensors for data collection

  • Yicheng Shao,
  • Maoliang Shen,
  • Yuankai Zhou,
  • Xin Cui,
  • Lijie Li and
  • Yan Zhang

Beilstein J. Nanotechnol. 2021, 12, 680–693, doi:10.3762/bjnano.12.54

Graphical Abstract
  • ][44][45][46], waste milk carton [15], and skin [47][48][49]. Thus, low-cost self-powered sensors can be deployed on a large scale and are a good candidate for data sources for the Internet of things (IoT), big data, and artificial intelligence (AI). NGs can be used as both pressure sensors and as
PDF
Album
Review
Published 08 Jul 2021

A stretchable triboelectric nanogenerator made of silver-coated glass microspheres for human motion energy harvesting and self-powered sensing applications

  • Hui Li,
  • Yaju Zhang,
  • Yonghui Wu,
  • Hui Zhao,
  • Weichao Wang,
  • Xu He and
  • Haiwu Zheng

Beilstein J. Nanotechnol. 2021, 12, 402–412, doi:10.3762/bjnano.12.32

Graphical Abstract
  • motion energy; silver-coated glass microsphere; single-electrode mode; triboelectric nanogenerator; wearable; Introduction Traditional batteries cannot provide a durable and reliable power supply for small portable electronic devices, personalized healthcare, and Internet-of-Things (IoT) devices [1][2
PDF
Album
Supp Info
Full Research Paper
Published 03 May 2021

Paper-based triboelectric nanogenerators and their applications: a review

  • Jing Han,
  • Nuo Xu,
  • Yuchen Liang,
  • Mei Ding,
  • Junyi Zhai,
  • Qijun Sun and
  • Zhong Lin Wang

Beilstein J. Nanotechnol. 2021, 12, 151–171, doi:10.3762/bjnano.12.12

Graphical Abstract
  • , including self-powered sensing devices, human–machine interaction, electrochemistry, and highly efficient energy harvesting devices. This leads to a simple yet effective way for the next generation of energy devices and paper electronics. Keywords: energy harvesting; interaction; Internet of Things (IoT
PDF
Album
Review
Published 01 Feb 2021

Triboelectric nanogenerator based on Teflon/vitamin B1 powder for self-powered humidity sensing

  • Liangyi Zhang,
  • Huan Li,
  • Yiyuan Xie,
  • Jing Guo and
  • Zhiyuan Zhu

Beilstein J. Nanotechnol. 2020, 11, 1394–1401, doi:10.3762/bjnano.11.123

Graphical Abstract
  • ; Introduction Recently, there has been unprecedented advancement in the internet of things (IoT) technology, which includes environmental monitoring and intelligent community applications. Particularly, humidity sensing has been investigated in environmental monitoring, and in other sectors, such as agriculture
PDF
Album
Full Research Paper
Published 11 Sep 2020

Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions

  • Botond Sánta,
  • Dániel Molnár,
  • Patrick Haiber,
  • Agnes Gubicza,
  • Edit Szilágyi,
  • Zsolt Zolnai,
  • András Halbritter and
  • Miklós Csontos

Beilstein J. Nanotechnol. 2020, 11, 92–100, doi:10.3762/bjnano.11.9

Graphical Abstract
  • ) Moreover, the so-called von Neumann bottleneck, i.e., the bandwidth-limited and power-hungry permanent data transfer between the physically separated processing, memory and permanent storage units prevents the large-scale establishment of autonomous, energy-efficient “internet of things (IoT)” hardware
PDF
Album
Full Research Paper
Published 08 Jan 2020
Other Beilstein-Institut Open Science Activities